Машины великолепно справляются с вычислениями, но при этом не очень хорошо – с мышлением как таковым. У машин бесконечный запас упорства и настойчивости, и, как кое‑кто говорит, они могут легко разгрызть сложную математическую проблему или помочь вам проехать через пробки в незнакомом городе, но все это – благодаря алгоритмам и программам, созданным людьми. Чего же машинам не хватает?
Машинам не хватает ви́дения (по крайней мере пока, и я не думаю, что наступление сингулярности это изменит). Я имею в виду отнюдь не зрение. Компьютеры не сами придумывают новое приложение, которому суждено стать популярным. Компьютеры не принимают решение исследовать далекие галактики – они прекрасно справятся с задачей, когда мы их туда отправим, но это уже другая история. Компьютеры, конечно, лучше среднестатистического человека работают в области высшей математики и квантовой механики, но у них нет видения, чтобы в принципе обнаружить необходимость в таких действиях. Машины могут выигрывать у людей в шахматы, но они еще не изобрели интеллектуальную игру, что займет человечество на столетия. Машины видят статистические закономерности, которые пропустит мой слабый мозг, но они не в состоянии выдвинуть новую идею, что соединит разрозненные наборы данных и создаст новую область науки.
Я не так уж сильно беспокоюсь по поводу машин, способных вычислять. Я как‑нибудь переживу постоянные вылеты браузера, но пусть у меня будет умный холодильник, способный отслеживать RFID‑коды лежащих в нем и вынимаемых из него продуктов и посылать мне СМС с напоминанием купить сливки по пути домой (пользуясь случаем, обращаюсь к тем, кто работает над такой системой: поторопитесь!). Мне нравится, когда компьютер подчеркивает незнакомые ему слова, и пусть среди них иногда оказывается какая‑нибудь «филогенетика», я могу находить опечатки в общеупотребительных словах (и прямо сейчас он тоже не позволяет мне писать с ошибками). Но эти примеры показывают: само по себе то, что машина демонстрирует нечто похожее на мышление, еще не означает, что она на самом деле мыслит – или, по крайней мере, что она мыслит подобно человеку.
Мне вспоминается одно из самых первых исследований в области обучения обезьян использованию языка – где они должны были манипулировать пластиковыми фишками, чтобы отвечать на разные вопросы. Впоследствии эксперимент повторили со студентами, которые – что неудивительно – исключительно преуспели в освоении системы, но когда их спросили, чем они занимались, те сказали, что решали какие‑то интересные головоломки и понятия не имели, что их обучали языку. Последовало широкое обсуждение, и мы многое открыли и многому научились в ходе новых исследований. Несколько особей, не являющихся людьми, смогли понять референтное значение различных символов, пользоваться которыми их учили, и мы многое узнали об интеллекте обезьяны в рамках оригинальной методологии. Смысл этой истории таков: то, что первоначально казалось сложной лингвистической системой, потребовало намного большей подготовки, чем предполагалось изначально, чтобы стать чем‑то большим, нежели серия относительно простых парных ассоциаций.
Так что меня беспокоят не мыслящие машины, а самодовольное общество, готовое отказаться от своих мечтателей в обмен на возможность не делать трудную работу. Люди должны воспользоваться собственными познавательными мощностями, которые освободились, когда машины взяли на себя грязную работу, быть благодарными за такую свободу и использовать ее, направляя свои способности на решение сложных насущных проблем, для которых требуется проницательность и пророческое видение.
|