Бедные, несчастные сотрудники Агентства национальной безопасности! Они шпионят за всеми (сюрприз!), что всех бесит. Но, по крайней мере, АНБ следит за нами для того, чтобы защитить нас от террористов. Прямо сейчас, когда вы читаете эти строки, где‑то далеко на экране какого‑то компьютера появилось всплывающее окно. В нем надпись: «Вы только что купили две тонны азотного удобрения. Тем, кто покупает две тонны азотного удобрения, также понравились вот эти детонаторы…» Amazon, Facebook, Google и Microsoft тоже за всеми шпионят. Но, поскольку такая слежка идет пользу всем нам, включая террористов, все в порядке.
Электронные шпионы – это не люди. Это машины. Шпионы‑люди вряд ли стали бы так радостно предлагать самый надежный детонатор. Каким‑то образом, использование искусственных разумов для анализа нашей электронной почты кажется более гигиеничным. Если виртуальные шпионы копаются в наших личных данных только для того, чтобы продать нам побольше барахла, то мы можем смириться с утратой конфиденциальности. Однако огромные вычислительные мощности направлены на то, чтобы машины пытались узнать, что у нас на уме. Общая вычислительная мощность, используемая такими компаниями, которые собирают наши с вами данные, составляет около одного эксафлопса[1] – миллиард миллиардов операций в секунду. Это как если бы электронные шпионы использовали вычислительную мощность одного современного смартфона на каждого человека на Земле.
Эксафлопс – это также общая мощность 500 самых производительных суперкомпьютеров в мире. Большая часть вычислительных мощностей в мире отведена под полезные задачи, такие как прогнозирование погоды или моделирование человеческого мозга. Довольно много машинных циклов также уходит на прогнозирование фондового рынка, взлом кодов и проектирование ядерного оружия. И все же значительную часть времени машины просто собирают нашу личную информацию, обдумывают ее и предлагают что‑то купить.
Но что именно они делают, когда думают о том, что думаем мы? Они проводят связи между большими объемами личных данных, которые мы им предоставили, и находят паттерны. Какие‑то из этих паттернов сложные, но большинство – довольно просты. Серьезных усилий стоит распознавание человеческой речи и расшифровка рукописного текста. На текущий момент пунктик у всех, кто интересуется разумными машинами, – это глубинное обучение. Когда я впервые услышал о нем, то очень заинтересовался идеей о том, что машины наконец‑то раскроют для нас суть экзистенциальных глубинных вещей: истины, красоты и любви. Мои заблуждения быстро развеялись. Слово «глубинное» в названии технологии относится к архитектуре процесса обучения машин. Он построен на использовании множества слоев взаимосвязанных логических элементов, аналогичных глубинным слоям взаимосвязанных нейронов в мозге. Оказывается, что отличить небрежно написанные «7» и «5» – задача не из легких. В 1980‑х годах первые компьютеры, построенные на принципе нейронных сетей, с этой работой не справились. Тогда исследователи, работавшие в области нейровычислительной техники, говорили, что будь у них побольше компьютеры да побольше данных для обучения, состоящих из миллионов, а не из тысяч неаккуратно написанных цифр, – вот тогда бы искусственный интеллект справился с задачей. Теперь все это есть. Глубинное обучение информационно широко – оно анализирует огромные объемы данных, – но концептуально поверхностно. Компьютеры теперь способны рассказать нам то, что наши собственные нейронные сети и так знали. Но если суперкомпьютер может отправить надписанный от руки конверт по правильному почтовому индексу, я говорю: «Так тому и быть».
В 1950‑е родоначальники искусственного интеллекта уверенно предсказали, что скоро в наших комнатах будут убираться роботизированные горничные. Как оказалось, легче запрограммировать компьютер на то, чтобы он обыграл чемпиона мира по шахматам, чем построить робота, который смог бы произвольно пропылесосить комнату и жалобно запищать, если вдруг застрянет под диваном. Теперь нам говорят, что суперкомпьютер с производительностью, измеряемой в эксафлопсах, сумеет раскрыть тайны человеческого мозга. Более вероятно, что у него разовьется жуткая мигрень и он попросит чашку кофе. Между тем у нас появился новый друг, советы которого таинственным образом подтверждают то, что он знает о наших самых сокровенных тайнах.
[1] Флопс (от англ. FLOPs, floating point operations – операции с плавающей запятой) – единица измерения производительности компьютеров; эксафлопс – 1018 операций с плавающей запятой в секунду. – Прим. ред.
|