Обширные пространства, загрязненные высокими дозами радиоактивных изотопов, типичных для атомной промышленности, представляют уникальные возможности для генетических популяционных исследований. К сожалению, эти исследования были начаты слишком поздно и без необходимых методических условий, обеспечивающих полную кооперацию биологов и физиков. Многие данные о характере загрязнения, исходном составе радиоактивной смеси, результаты постоянной дозиметрии и ряд других сведений пока еще засекречены и не предоставляются в распоряжение биологов и экологов. Опыты с растениями, о которых я сообщил в предыдущем разделе, могли бы иметь большую ценность как популяционно‑генетические, если бы авторы могли, например, знать, сколько поколений тех или иных растений сменилось на данном участке за 11 или 14 лет. При работе с многолетними растениями этого нельзя сказать только по годам, собираемые семена являются смесью от разных поколений. При работе с животными учет числа поколений проще, но для млекопитающих нужно создавать какие‑то прочные ограждения, сокращающие площади миграции и ограничивающие жизнедеятельность той или иной достаточно большой группы животных пределами участков с тем или иным уровнем активности. Значительно меньше методических трудностей при изучении почвенных животных, которые не мигрируют на большие расстояния.
Однако в области популяционной радиационной генетики в зоне уральского загрязнения сделано пока очень мало. В обзорной статье Н. П. Дубинина с соавторами [49] сообщается о попытках популяционно‑генетического изучения двух видов мышей (работа чисто экспериментального характера по приводимым в статье данным не печаталась отдельно, поэтому многие методические детали остаются неясными). Кроме этого, за ряд лет опубликованы популяционно‑генетические исследования почвенной водоросли хлореллы [49, 60, 61].
Н. П. Дубинин является директором Института общей генетики, и в основном его личные экспериментальные работы обычно проводятся на дрозофиле. Кто из пяти соавторов обзора проводил исследования на мышах, остается неясным. Цель исследования была по существу такой же, как и в работе А. И. Ильенко с соавторами [33], опубликованной двумя годами позже, в 1974 г. Группа Н. П. Дубинина работала в тесном сотрудничестве с А. И. Ильенко, и при характеристике радиоактивной загрязненности двух участков, на которых производился отлов мышей, дается ссылка на статьи Ильенко, опубликованные в 1967 г. [20, 21]. Дубинин с сотрудниками предполагали, что за много лет обитания в условиях радиоактивного биоценоза может произойти отбор новых рас мышей, более устойчивых к действию облучения.
Проверка этой идеи проводилась на двух видах мышей, обитавших в радиоактивной среде: на красных полевках (Clethrionomus rutilus ) и лесных мышах (Apodemus sylvaticus ). Когда был начат этот опыт и в каком году проводились исследования радиоустойчивости мышей и динамики хромосомных аномалий в их клетках под действием внешнего облучения (сравнительно с контролем), авторы не сообщают. Однако они, естественно, приводят данные о том, что к моменту начала их опытов на загрязненной территории «сменилось около 25–30 генераций животных» [49. С. 194]. Нетрудно подсчитать, что для смены стольких генераций необходимо 10–11 лет. Я уже примерно рассчитывал выше (в разделе «Челябинская катастрофа…»), что при типичном для мышей расселении новых выводков на достаточно большие расстояния уверенность о том, что вылавливаемые после 30 поколений мыши являются потомками тех, которые жили в этом же биоценозе 10–11 лет назад, может существовать лишь при загрязнении очень больших территорий, примерно радиусом 30 км. У Дубинина с соавторами не указаны размеры загрязненных территорий, но в таблицах, демонстрирующих влияние радиоактивного биоценоза на частоту возникновения хромосомных аномалий, уровни загрязнения двух сравниваемых биоценозов по стронцию‑90 даны в кюри на квадратный километр. Во всех других исследованиях животных и растений, которые уже были ранее рассмотрены, активность среды обычно дается на квадратный метр, кюри/км2 появляется впервые [49. С. 196] – по‑видимому, по недосмотру цензуры. В конце концов, даже цензоры, специализирующиеся на научных публикациях, могут пропустить мелкие детали, особенно в цифрах, таблицах и единицах измерения.
Сравнивались два биоценоза: (1) контрольный – 1000–1500 кюри/км2, (2) 1800–3500 кюри/км2. В расчете на 1 м2 это составляет 1–1,5 мкюри, 1,8–3,5 мкюри. Эти же значения приводит и Ильенко, работавший в том же районе, только у него не 3,5, а 3,4, но возможно, что Дубинин округлил. Но если счет активности идет на тысячи кюри и на квадратные километры, то сразу ясно, что это никак не экспериментальный, искусственно созданный участок.
Для опытов такого рода, когда животные обитают в загрязненной зоне около 10 лет, радиоактивность биоценоза нужно давать в динамике по годам, но такой возможности не было и у Дубинина. Выводы Дубинина с сотрудниками по этой серии опытов состоят в том, что у мышей, длительное время обитавших в условиях радиоактивной среды, заметно увеличен так называемый мутационный груз и поэтому выше и частота соматических мутаций. Однако их клетки обладают большей радиорезистентностью к дополнительным дозам радиации. В отличие от аналогичных опытов Ильенко с сотрудниками [33], когда радиочувствительность определялась по смертности от внешнего гамма‑облучения, группа Дубинина выявляла радиочувствительность по увеличению частоты хромосомных перестроек от дополнительного количества стронция‑90, вводимого мышам путем инъекций.
Другая серия исследований по популяционной генетике проводилась с одноклеточной почвенной водорослью хлореллой (Chlorella ), и все связанные с ними материалы публиковались В. А. Шевченко с соавторами (Институт общей генетики АН СССР). Эта группа и раньше проводила опыты по генетике хлореллы (Шевченко публиковал ранее результаты многих чисто лабораторных экспериментов по ее радиационной генетике [60]). В 1970 г. В. А. Шевченко опубликовал интересное исследование по радиационной генетике хлореллы в условиях естественного биоценоза [61]. Работы с почвенной водорослью не требуют обширных пространств и могут быть проведены на нескольких квадратных метрах в естественных условиях – на почве, экспериментально загрязненной стронцием или цезием. Не было бы никаких оснований считать, что радиационные исследования с хлореллой В. А. Шевченко действительно проводил в Челябинской области, если бы в автобиографии Н. П. Дубинин не сказал о том, что опыты его сотрудников с хлореллой проводились в том же загрязненном районе, где они вели в течение 11 лет наблюдения и над другими видами. В этом районе, по словам Н. П. Дубинина, «часть видов эволюционировала в сторону создания более радиоустойчивых форм. Эти новые популяции перестали страдать от воздействия определенных доз радиации. Таким видом оказалась одноклеточная зеленая почвенная водоросль хлорелла. Однако, чтобы создать через мутации и отбор новую радиоустойчивую хлореллу, понадобилось пять лет, в течение которых прошло 200 поколений ее жизни в условиях высокого фона радиации» [51. С. 330].
Но в действительности дело обстояло не совсем так. В. А. Шевченко начал брать пробы почвы для изучения хлореллы только через пять лет после загрязнения радиоактивностью естественного ландшафта. В последней публикации из этой серии – обзоре, написанном им совместно с Дубининым и др., говорится, что пробы хлореллы «были взяты через 5, 6 и 11 лет с момента внесения радионуклидов. При этом к последнему сроку анализа природного материала в популяциях хлореллы прошло около 400 поколений» [49. С. 182]. Годы взятия проб не указаны, но этот обзорный ежегодник, вышедший в свет в 1972 г., был (судя по выходным данным) сдан в набор 22 ноября 1971 г. Сборники‑ежегодники большого объема готовятся к печати в СССР не меньше 7–8 месяцев, поэтому статья‑обзор была завершена, очевидно, в начале 1971‑го или в конце 1970 г. (в списке литературы к статье нет ни одной ссылки на работы, напечатанные позднее 1969 г.). Поэтому начало (11 лет назад) экспериментов с хлореллой опять проецируются на 1957–1958 гг., когда произошла уральская катастрофа.
Вполне естественно, что если бы группа Шевченко проводила экспериментальное загрязнение почвы в 1958 г., то и проверка радиоустойчивости водорослей была бы начата не с 201‑го поколения и не через 5 лет. Однако главная особенность этого исследования состоит в том, что материал для своей работы В. А. Шевченко с сотрудниками собирали с участков исключительно высокой активности. Динамику активности по годам авторы, естественно, не приводят, но они не приводят и уровни загрязнения в милликюри или в микрокюри. Но так как для выделения штаммов водорослей необходимо было брать пробы почвы, то радиоактивность почвы тоже измерялась и дается в импульсах (распадах) в минуту на 1 кг почвы. В опыте, кроме контроля, было шесть вариантов с разными уровнями загрязнения, в первом активность почвы составляла «от 1·106 до 1·107» распадов в минуту на 1 кг, в последнем от 1·109–1·1010. 1 микрокюри дает 37 000 распадов в секунду, то есть около 2·106распадов в минуту; 2·109 распадов в минуту – это милликюри. Если на экспериментальном участке было от 1 до 10 милликюри на 1 кг почвы, то на 1 м2 в слое глубиной 10 см активность должна доходить до 1 кюри. Такая концентрация в хронической форме летальна для всех животных и более сложных растений, и практически только одноклеточные водоросли, относящиеся к наиболее устойчивым к радиации в живом мире видам, могли выдерживать столь высокие дозы и выживать без какого‑либо заметного угнетения. В опытах из почв были выделены три вида: Chlorella vulgaris, Chl. terricola, Chl. ellipsodea , причем на долю первого приходилось около 80 %, и с ним проводились в основном дальнейшие опыты.
Детали измерения радиоактивности почвы (тип счетчика, эффективность и т. д.) не приводятся, поэтому трудно судить, насколько значения типа 109 или 1010 представляют результат отсчета с полным анализом эффективности. Водоросли развиваются в поверхностных слоях почвы, и отбор проб производился из самого верхнего слоя толщиной 0,2–0,5 см. Из этого же слоя брались и пробы почв на определение активности. Но через 5 лет после поверхностного выпадения радионуклидов именно в этом слое могли произойти наиболее сильные изменения удельной активности – за 5 лет до начала измерений этот слой мог быть намного активнее. Отсутствие исходных, весьма важных данных еще раз показывает, что авторы не проводили сами закладку опытов, а пользовались, с большим опозданием, уже имевшимся загрязнением. Поскольку на этом участке загрязнения уровень радиоактивности доходил почти до 1 кюри/м2, то можно предположить, что он располагался где‑то близко к эпицентру первичного загрязнения. Вряд ли на этих участках могла выживать какая‑либо поверхностная растительность – их можно представить лишь как голую почву с развивающимся в поверхностном слое позеленением от водорослей при наличии увлажнения.
В условиях промышленного загрязнения именно такие «голые» участки представляют наибольшую опасность для разноса активности путем ветровой эрозии, и столь сильно активную почву следует либо перемещать глубокой вспашкой на большую глубину, либо вывозить для более глубокого захоронения. Почему через 5, 6 и 11 лет после загрязнения в этой зоне были еще столь активные на поверхности участки, остается неясным. Такие участки созданы не природой, а покрыты высокоактивными реакторными отходами, смешанными с почвой. Они крайне опасны как источники вторичного загрязнения и должны обязательно ликвидироваться. Наличие таких участков в течение многих лет после аварии может служить причиной беспокойства.
|